

Welcome to recipes’s documentation!

Contents:

	Example Recipe

	Recipe Actions
	union

	addconstantfield

	makecombofield

	filterin

	filterout

	expandrows

	transposecols

	addnormalizedcol

	addaveragecol

	splitcol

	jointables

	Use-case Examples

	Running the Script
	Notes:

Indices and tables

	Index

	Module Index

	Search Page

Example Recipe

Here is the example.json recipe file with comments:

{
 "outputfiles": [
 {
 "fields": [

 # for fields, the name must be a name that has been given in the tablelist section below
 # these are often field names from the input datasets, but also can be fieldnames generated from actions
 # newname is the fieldname that will be generated in the output file and replace the old field name
 {
 "newname": "gene_symbol",
 "name": "Gene Symbol"
 },
 {
 "newname": "uniprot_ac",
 "name": "Uniprot AC"
 },
 {
 "newname": "chr_num",
 "name": "Chr Num"
 },
 {
 "newname": "chr_pos",
 "name": "Chr Pos"
 },
 {
 "newname": "ref_nt",
 "name": "Ref NT"
 },
 {
 "newname": "alt_nt",
 "name": "Alt NT"
 }
],

 # the tableid denotes what table from the tablelist will be used for this output file
 "tableid": 3,

 # the masterlistfilter field denotes the fieldname that is used as the primary field name for filtering
 "masterlistfilterfield":"gene_symbol",

 # the filepath gives the name and path for the outputfile
 "filepath": "unreviewed/example_dataset.csv"
 }
],
 "tablelist": [
 {
 # every table in tablelist has a tableid, which can be referenced by other acgtions or the outputfile
 "id": 1,

 # input denotes we are taking a file in from the filepath listed
 "type": "input",

 # the separator denotes the structure of the input file
 # here the separator is 'doublequote comma doublequote'
 # so each line of the input file looks like this "a","b","c"
 "separator": "\",\"",

 # list of the fields in the inout file
 "fields": [
 "Uniprot AC",
 "Chr Num",
 "Chr Pos",
 "Ref NT",
 "Alt NT",
 "EXAC Alt Frequency",
 "1000 Genomes Alt Frequency"
],
 "filepath": "downloads/example_mutations.csv"
 },
 {
 # same as above for table '"id":1', but for a different input file
 "id": 2,
 "type": "input",
 "separator": "\",\"",
 "fields": [
 "uniprot accession",
 "Gene Symbol"
],
 "filepath": "downloads/example_mapping.csv"
 },
 {
 # this table performs an action
 "id": 3,

 # the type is output so it will be generating a new table based on the action used
 "type": "output",

 # the tables that are input to generate this new table.
 # in this case our input files from tables 1 and 2
 "inputtables":[1,2],

 # what action will be taken to make the new table
 "action":{
 # the name gives the specific action to take
 "name":"jointables",

 # different actions have their own parameters.
 # in this case the jointables action has only the parameter "anchorfields".
 # specific details on actions are below in the README
 "anchorfields":["Uniprot AC", "uniprot accession"]
 },
 }
]
}

Recipe Actions

union

Summary

Merge multiple tables and remove duplicate lines.

Format

Output Format:

{
 "id":#,
 "type":"output",
 "inputtables":[#,#,#],
 "action":{
 "name":"union"
 }
}

Notes:

This action can take multiple inputtable tables.

See use-case recipe example_part1.json for usage example.

addconstantfield

Summary

Add a new field to the table that has the same constant entry for each line.

Format

Output Format:

{
 "id":#,
 "type":"output",
 "inputtables":[#,#,#],
 "action":{
 "name":"addconstantfield",
 "newfields":{
 "example_field_1":"example_entry_1",
 "example_field_2":"example_entry_2"
 }
 }
}

Notes:

This action can take multiple inputtable tables.

See use-case recipe example_part2.json for usage example.

makecombofield

Summary

Combine two fields into one field.

Format

Output Format:

{
 "id":#,
 "type":"output",
 "inputtables":[#],
 "action":{
 "name":"makecombofield",
 "fieldlist":[
 "example_field_1",
 "example_field_2"
],
 "merge_char":"|",
 "combofield":"example_combo_field"
 }
}

Notes:

This action can take a single inputtable table.

The above example makes the combined field example_combo_field from example_field_1 and example_field_2.

The entries in each of the fields will merge into the combined field and be separated by the merge character, in the example the charcater is |.

See use-case recipe example_part1.json for usage example.

filterin

Summary

Filter only certain lines from one table into another.

Needs review from Robel.

Format

Output Format:

{
 "id":#,
 "type":"output",
 "inputtables":[#],
 "action":{
 "name":"filterin",
 "operation":"AND",
 "conditionlist":[
 "field":"example_field_1",
 "value":[
 "ABC",
 "-",
 ""
],
 "operation":"in"
 }
}

Notes:

This action can take a single inputtable table.

In the above example, only the lines with the values ABC, -, or an empty field will be included in to a new table.

See use-case recipe example_part2.json for usage example.

Question for Robel:
What is the purpose of “operation”?

filterout

Summary

Filter out only certain lines from a table to create a table without those entries.

Needs review from Robel.

Format

Output Format:

{
 "id":#,
 "type":"output",
 "inputtables":[#],
 "action":{
 "name":"filterout",
 "operation":"AND",
 "conditionlist":[
 "field":"example_field_1",
 "value":[
 "DEF"
 "123"
 "456"
],
 "operation":"in"
 }
}

Notes:

This action can take a single inputtable table.

In the above example, lines with the values DEF, 123, or 456 in the field example_field_1 will be excluded from a new table, and all other lines with other values for that field will be included.

See use-case recipe example_part1.json for usage example.

Question for Robel:
What is the purpose of “operation”?

expandrows

Summary

For a single line that has a field with multiple data points in one field, create multiple lines where each line has a single data point from that field.

Format

Output Format:

{
 "id":#,
 "type":"output",
 "inputtables":[#],
 "action":{
 "name":"expandrows",
 "expansionfield":"example_field_1",
 "expansiondelim":";"
 }
 }
}

Notes:

This action can take a single inputtable table.

In the above example, the field exmple_field_1 will be used to expand rows. For every line that has the expansion delim ;, the data in that row will be separated and a new line created for each data point.

An example:

Table input:
“example_field_1”
“data_point_1;data_point_2”,”information_abc”

Table output from expandrows above:
“example_field_1”,”example_field_2”
“data_point_1”,”information_abc”
“data_point_2”,”information_abc”

See use-case recipe example_part2.json for usage example.

transposecols

Summary

The rows switch with columns and vice versa(?)

Needs review from Robel.

Format

Output Format:

{
 "id":#,
 "type":"output",
 "inputtables":[#],
 "action":{
 "name":"transposecols",
 "startcolidx":1,
 "newfieldone":"new_example_field_1"
 "newfieldtwo":"new_example_field_2"
 }
 }
}

Notes:

This action can take a single inputtable table.

See use-case recipe example_part2.json for usage example.

Question for Robel:
How is this action used?

addnormalizedcol

Summary

Create a new column that takes the numerical data from an existing column and normalizes the numbers according to (?)

Needs review from Robel.

Format

Output Format:

{
 "id":#,
 "type":"output",
 "inputtables":[#],
 "action":{
 "name":"addnormalizedcol",
 "startcolidx":1,
 "newfield":"normalized_example_field_1"
 "anchorfields":["example_field_2"]
 }
 }
 }

Notes:

This action can take a single inputtable table.

See use-case recipe example_part2.json for usage example.

Question for Robel:
How is normalization calculated?

addaveragecol

Summary

Create a new column that takes the numerical data from an existing column and averages the numbers according to (?)

Needs review from Robel.

Format

Output Format:

{
 "id":#,
 "type":"output",
 "inputtables":[#],
 "action":{
 "name":"addaveragecol",
 "field":"example_field_1",
 "newfield":"average_example_field_1"
 "anchorfields":["example_field_2"]
 }
 }
 }

Notes:

This action can take a single inputtable table.

See use-case recipe example_part2.json for usage example.

Question for Robel:
How is the average being calculated?

splitcol

Summary

Split a single column into two separate columns after specifying a deliminating character that separates the values.

Format

Output Format:

{
 "id":#,
 "type":"output",
 "inputtables":[#],
 "action":{
 "name":"splitcol",
 "field":"example_field_1",
 "newfields":["example_field_1a","example_field_1b"],
 "delim":"|"
 }
 }
}

Notes:

This action can take a single inputtable table.

See use-case recipe example_part1.json for usage example.

jointables

Summary

Create a new table that uses an anchor field to combine columns from multiple tables. Data with the same anchor field value will be added to the same row in the new field.

Format

Output Format:

{
 "id":#,
 "type":"output",
 "inputtables":[#,#,#],
 "action":{
 "name":"jointables",
 "anchorfields":["example_field_1","example_field_2"]
 }
 }
}

Notes:

This action can take multiple inputtable table.

See use-case recipe example_part1.json for usage example.

Use-case Examples

There are three example data files as well as an example recipe to demonstrate how actions are used on real data.

Example Recipes and the actions they contain:

	example_part1.json
	
	union

	jointables

	makecombofield

	splitcol

	example_part2.json
	
	all actions from part 1

	filterin

	filterout

	expandrows

	addnormalizedcol

	addaveragecol

	Actions not yet added:
	
	transposecol

	addconstantfield

The example recipe takes all of the example data files as input.

In the recipe each of the actions are used. To see the outcome of any one action, change the tableid option listed in the outputfiles section.

Be sure to change the name of the outputfile in the filepath option in the outputfiles section, otherwise each time you run the recipe it will overwrite the previous output file.

Example Data:
example_mutations_1.csv
example_mutations_2.csv
example_mapping.csv

The contents of the data files are the following:

example_mutations_1.csv and example_mutations_2.csv contain SNP data gatehred from UCSC genome browser.
- There are both unique and overlapping values between these two mutation files

example_mapping.csv contains uniprot terms and their corresponsing gene symbols, which allows us to show how you can map terms from one table to terms from one table to another

Running the Script

To execute a recipe, run the following command:

python make-datasets.py -d your_data_name

For your_data_name provide the name of the recipe before the .json, so in this case the recipe name is your_data_name.json

Notes:

To run the make-datasets.py script, you must be in the same folder as the script

Your recipe must be in the recipes folder

Index

Summary

Recipe files are used to describe the actions that the script “make-datasets.py” will perform on a “.csv” dataset file, to process the dataset for integration into a OncoMX or Glygen.

Recipe files are in “.json” format. For more information on the “.json” format, go to www.json.org

The recipe consists of two major sections: “outputfiles” and “tablelist”.

Put simply, in “tablelist” you will create tables from the list of “actions” that can be performed.

You will then use “outputfiles” to denote what tables you wish to export and the content to include from those tables.

The “outputfile” is typically the reformatted dataset “.csv” that will then move forward in the pipeline to eventually be included on the frontend of OncoMX or Glygen.

Troubleshooting

The majority of errors that prevent the script from running result from inproper formatting of the JSON file.

In the error message you will typically receive a line number on which the error is encountered.

To find this exact line number, while using vi to look at your recipe, type :set number and hit enter to see line numbers

csvutil.py module

make-dataset module

scripts

	make-dataset module

	csvutil.py module

 nav.xhtml

 Table of Contents

 		
 Welcome to recipes’s documentation!

 		
 Example Recipe

 		
 Recipe Actions

 		
 union

 		
 Summary

 		
 Format

 		
 Notes:

 		
 addconstantfield

 		
 Summary

 		
 Format

 		
 Notes:

 		
 makecombofield

 		
 Summary

 		
 Format

 		
 Notes:

 		
 filterin

 		
 Summary

 		
 Format

 		
 Notes:

 		
 filterout

 		
 Summary

 		
 Format

 		
 Notes:

 		
 expandrows

 		
 Summary

 		
 Format

 		
 Notes:

 		
 transposecols

 		
 Summary

 		
 Format

 		
 Notes:

 		
 addnormalizedcol

 		
 Summary

 		
 Format

 		
 Notes:

 		
 addaveragecol

 		
 Summary

 		
 Format

 		
 Notes:

 		
 splitcol

 		
 Summary

 		
 Format

 		
 Notes:

 		
 jointables

 		
 Summary

 		
 Format

 		
 Notes:

 		
 Use-case Examples

 		
 Running the Script

 		
 Notes:

_static/file.png

_static/minus.png

_static/plus.png

